29 research outputs found

    Barrier Performance of CVD Graphene Films Using a Facile P3HT Thin Film Optical Transmission Test

    Get PDF
    The barrier performance of CVD graphene films was determined using a poly(3-hexylthiophene) (P3HT) thin film optical transmission test. P3HT is a semiconducting polymer that photo-oxidatively degrades upon exposure to oxygen and light. The polymer is stable under ambient conditions and indoor lighting, enabling P3HT films to be deposited and encapsulated in air. P3HT’s stability under ambient conditions makes it desirable for an initial evaluation of barrier materials as a complimentary screening method in combination with conventional barrier tests. The P3HT test was used to demonstrate improved barrier performance for polymer substrates after addition of CVD graphene films. A layer-by-layer transfer method was utilized to enhance the barrier performance of monolayer graphene. Another set of absorption measurements were conducted to demonstrate the barrier performance of graphene and the degradation mechanism of graphene/P3HT over multiple wavelengths from 400 to 800 nm. The absorption spectra for graphene/polymer composite were simulated by solving Fresnel equations. The simulation results were found to be in good agreement with the measured absorption spectra. The P3HT degradation results qualitatively indicate the potential of graphene films as a possible candidate for medium performance barriers

    Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings

    Get PDF
    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate adhesion is found to correlate very well with the work of adhesion between the emulsion droplets used to form the CyC5 hydrate and the underlying substrates

    Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction

    Get PDF
    Understanding wettability and mechanisms of wetting transition are important for design and engineering of superhydrophobic surfaces. There have been numerous studies on the design and fabrication of superhydrophobic and omniphobic surfaces and on the wetting transition mechanisms triggered by liquid evaporation. However, there is a lack of a universal method to examine wetting transition on rough surfaces. Here, we introduce force zones across the droplet base and use a local force balance model to explain wetting transition on engineered nanoporous microstructures, utilizing a critical force per unit length (FPL) value. For the first time, we provide a universal scale using the concept of the critical FPL value which enables comparison of various superhydrophobic surfaces in terms of preventing wetting transition during liquid evaporation. In addition, we establish the concept of contact line-fraction theoretically and experimentally by relating it to area-fraction, which clarifies various arguments about the validity of the Cassie-Baxter equation. We use the contact line-fraction model to explain the droplet contact angles, liquid evaporation modes, and depinning mechanism during liquid evaporation. Finally, we develop a model relating a droplet curvature to conventional beam deflection, providing a framework for engineering pressure stable superhydrophobic surfaces

    Stretchable and Hydrophobic Electrochromic Devices Using Wrinkled Graphene and PEDOT:PSS

    Get PDF
    We present an electrochromic device (ECD) fabricated using PEDOT:PSS and graphene as active conductive electrode films and a flexible compliant polyurethane substrate with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TSFI) additive, as ionic medium. This device with a docile, elastic intermediate substrate along with a transparency controlled PEDOT:PSS film provides a wide color contrast and fast switching rate. We harness wrinkling instability of graphene to achieve a hydrophobic nature without compromising transparency of the ECD. This mechanical self-assembly approach helps in controlling the wavelength of wrinkles generated by inducing measured prestrain conditions and regulating the modulus contrast by selection of underlying materials used, hereby controlling the extent of transparency. The reduction and oxidation switching times for the device were analyzed to be 5.76 s and 5.34 s for a 90% transmittance change at an operating DC voltage of 15 ± 0.1 V. Strain dependent studies show that the performance was robust with the device retaining switching contrasts even at 15% uniaxial strain conditions. Our device also exhibits superior antiwetting properties with an average water contact angle of 110°  ± 2° at an induced radial prestrain of 30% in the graphene film. A wide range color contrast, flexibility, and antiwetting nature of the device envision its uses in smart windows, visors, and other wearable equipment where these functionalities are of outmost importance for developing new generation of smart interactive devices

    Ultrathin high-resolution flexographic printing using nanoporous stamps

    Get PDF
    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO[subscript 3], and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 ÎĽm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.Massachusetts Institute of Technology. Department of Mechanical EngineeringNational Science Foundation (U.S.) (Grant CMMI-1463181)United States. Air Force Office of Scientific Research. Young Investigator Program (Grant FA9550-11-1-0089)National Institutes of Health (U.S.) (Grant 1R21HL114011-01A1

    Large eddy simulation of smoke flow in a real road tunnel fire using FDS

    Get PDF
    Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise

    The synthesis, doping, and characterization of graphene films

    Get PDF
    Graphene, a two-dimensional counterpart of three-dimensional graphite, has attracted significant interest, due to its distinctive electrical and mechanical properties, for developing electronic, optoelectronic, and sensor technologies. In general, doping of graphene is important, as it gives rise to p-type and n-type materials, and it adjusts the work function of the graphene. This adjustment is necessary in order to control charge injection and collection in devices such as solar cells and light emitting devices. Current methods for graphene doping involve high temperature process or interactions with chemicals that are not stable. Moreover, the process of transferring graphene from its growth substrate and its exposure to the environment results in a host of chemical groups that can become attached to the film and alter its electronic properties by accepting or donating electrons/holes. Intentional and controllable doping of the graphene, however, requires a deeper understanding of the impact of these groups. The proposed research will attempt to clarify the unintentional doping mechanism in graphene through adsorption or desorption of gas/vapor molecules found in standard environments. A low temperature, controllable and defect-free method for doping graphene layers will also be studied through modifying the interface of graphene and its support substrate with self-assembled monolayers (SAMs) which changes the work function and charge carriers in the graphene layer. Furthermore, current methods of chemical vapor deposition synthesis of graphene requires the film to be transferred onto a second substrate when the metal layer used for growth is not compatible with device fabrication or operation. To address this issue, the proposed work will investigate a new method for wafer scale, transfer-free synthesis of graphene on dielectric substrates using new carbon sources. This technique allows patterned synthesis on the target substrate and is compatible with standard device fabrication technologies; hence, it opens a new pathway for low cost, large area synthesis of graphene films.Ph.D

    Droplet Dynamics and Freezing Delay on Nanoporous Microstructured Surfaces at Condensing Environment

    No full text
    Superhydrophobic surfaces have aroused great interest for being promising candidates in applications such as self-cleaning, anti-icing, and corrosion resistance. However, most of the superhydrophobic surfaces lose their anti-wettability in low surface temperature and high humidity. The loss of superhydrophobicity by condensed liquid is a very common practical incident, yet to be understood properly. Here we report the wettability of the superhydrophobic nanoporous surfaces in condensation and freezing environments. Various structured surfaces fabricated with carbon nanotubes (CNT) and coated by an ultrathin, conformal, and low surface energy layer of poly (1H,1H,2H,2H-perfluorodecylacrylate) (pPFDA) are exploited in humid conditions. Droplet impact dynamics, condensate characteristics, and freezing time delays are investigated on the CNT micropillars with various geometries along with the CNT forest and two commercially available anti-wetting coatings, NeverWet and WX2100. Nanoporous microstructured CNT pillars with the favorable topological configuration demonstrated complete droplet bouncing, significant freezing delays, and considerable durability during several icing/de-icing cycles. This study provides an understanding on the preferable geometry of the highly porous CNT micropillars for retaining hydrophobicity and preventing ice formation, which is of practical importance for the rational development of anti-wetting surfaces and their applications in low temperatures and humid conditions
    corecore